23 经典卷积神经网络 LeNet

网络架构图

Layer Description Input Size Output Size Weight Flop
Input 32×32 grayscale image 1×1×32×32 1×1×32×32 0 0
C1:Conv Conv layer with 6filters of size 5×5,stride 1 1×1×32×32 1×6×28×28 1×6×5×5+6 1×5×5×outputsize
S2:Pooling Pooling layer with 2×2 average pooling,stride 2 1×6×28×28 1×6×14×14 0 0
C3:Conv Conv layer with 16 filters of sizen 5×5,stride1 1×6×14×14 1×16×10×10 6×16×5×5+16 6×5×5×outputsize
S4:Conv Conv layer with 2×2 average pooling,stride 2 1×16×10×10 1×16×5×5 0 0
F5:Fully connected layer Fully connected layer with 400 inputs,120 outputs 400 120 400×120+120 400×120
F6:Fully connected layer Fully connected layer with 120 inputs,84 outputs 120 84 120×84+84 120×84
output output layer with 84 inputs,10 outputs(10-class) 84 10 84×10+10 84×10

数据集

超参数

权重

复杂度

损失函数

评估指标

QA
tmp-112.png

tmp-113.png


References

23 经典卷积神经网络 LeNet【动手学深度学习v2】_哔哩哔哩_bilibili